Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.375
Filter
1.
Adv Mater ; : e2311489, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696759

ABSTRACT

Slippery surfaces, which originate in nature with special wettability, have attracted considerable attention in both fundamental research and practical applications in a variety of fields due to their unique characteristics of superlow liquid friction and adhesion. Although research on bioinspired slippery surfaces is still in its infancy, it is a rapidly growing and enormously promising field. Herein, a systematic review of recent progress in bioinspired slippery surfaces, beginning with a brief introduction of several typical creatures with slippery property in nature, is presented. Subsequently,this review gives a detailed discussion on the basic concepts of the wetting, friction, and drag from micro- and macro-aspects and focuses on the underlying slippery mechanism. Next, the state-of-the-art developments in three categories of slippery surfaces of air-trapped, liquid-infused, and liquid-like slippery surfaces, including materials, design principles, and preparation methods, are summarized and the emerging applications are highlighted. Finally, the current challenges and future prospects of various slippery surfaces are addressed.

3.
Int J Biol Macromol ; : 132536, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38777021

ABSTRACT

The enhancement of antimicrobial wound dressings is of utmost importance in light of the escalating risk of antibiotic resistance caused by excessive antibiotic usage. Conventional antimicrobial materials eradicate pathogenic bacteria while impeding the proliferation of beneficial bacteria during the management of wound infections, thereby disturbing the equilibrium of the skin micro-ecosystem and engendering recurrent cutaneous complications. Lactobacillus rhamnosus (L.rha) is a probiotic that can inhibit the growth of certain pathogenic bacteria by secreting a large number of metabolites. In this paper, we synthesized a cross-linker with a boric acid molecule (SPBA) from succinic acid and 4-(bromomethyl)phenylboronic acid, which formed a boric acid ester bond with a diol on the natural polysaccharide sodium alginate (SA), and obtained a pH/reactive oxygen species (ROS) dual-responsive hydrogel (SA-SPBA) for loading L.rha to treat wound infections. The SA-SPBA@L.rha hydrogel improves the survival of L.rha during storage and has good injectability as well as self-healing properties. The hydrogel showed good biocompatibility, the antimicrobial effect increases in a dose-dependent manner, and it has a certain antioxidant and anti-inflammatory capacity, accelerating wound repair. The use of SA-SPBA@L.rha hydrogel provides a safe and effective strategy for the repair of skin wound infections.

4.
World J Microbiol Biotechnol ; 40(7): 208, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767676

ABSTRACT

Chlorinated organic compounds (COCs) are typical refractory organic compounds, having high biological toxicity. These compounds are a type of pervasive pollutants that can be present in polluted soil, air, and various types of waterways, such as groundwater, rivers, and lakes, posing a significant threat to the ecological environment and human health. Bioelectrochemical systems (BESs) are an effective strategy for the degradation of bio-refractory compounds. BESs improve the waste treatment efficiency through the application of weak electrical stimulation. This review discusses the processes of BESs configurations and degradation performances in different environmental media including wastewater, soil, waste gas and groundwater. In addition, the degradation mechanisms and performance-enhancing additives are summarized. The future challenges and perspectives on the development of BES for COCs removal are briefly discussed.


Subject(s)
Biodegradation, Environmental , Electrochemical Techniques , Wastewater/chemistry , Hydrocarbons, Chlorinated/metabolism , Water Pollutants, Chemical/metabolism , Groundwater/chemistry , Organic Chemicals/metabolism
5.
Elife ; 132024 May 03.
Article in English | MEDLINE | ID: mdl-38700136

ABSTRACT

Cholecystokinin (CCK) is an essential modulator for neuroplasticity in sensory and emotional domains. Here, we investigated the role of CCK in motor learning using a single pellet reaching task in mice. Mice with a knockout of Cck gene (Cck-/-) or blockade of CCK-B receptor (CCKBR) showed defective motor learning ability; the success rate of retrieving reward remained at the baseline level compared to the wildtype mice with significantly increased success rate. We observed no long-term potentiation upon high-frequency stimulation in the motor cortex of Cck-/- mice, indicating a possible association between motor learning deficiency and neuroplasticity in the motor cortex. In vivo calcium imaging demonstrated that the deficiency of CCK signaling disrupted the refinement of population neuronal activity in the motor cortex during motor skill training. Anatomical tracing revealed direct projections from CCK-expressing neurons in the rhinal cortex to the motor cortex. Inactivation of the CCK neurons in the rhinal cortex that project to the motor cortex bilaterally using chemogenetic methods significantly suppressed motor learning, and intraperitoneal application of CCK4, a tetrapeptide CCK agonist, rescued the motor learning deficits of Cck-/- mice. In summary, our results suggest that CCK, which could be provided from the rhinal cortex, may surpport motor skill learning by modulating neuroplasticity in the motor cortex.


Subject(s)
Cholecystokinin , Learning , Mice, Knockout , Motor Cortex , Motor Skills , Neuronal Plasticity , Animals , Male , Mice , Cholecystokinin/metabolism , Learning/physiology , Motor Cortex/physiology , Motor Cortex/metabolism , Motor Cortex/drug effects , Motor Skills/physiology , Neuronal Plasticity/physiology , Neuronal Plasticity/drug effects
6.
Mol Plant ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38745413

ABSTRACT

Circular single-stranded (ss) DNA viruses have been rarely found in fungi, and the evolutionary and ecological relationships among ssDNA viruses infecting fungi and other organisms remain unclear. Here, a novel circular ssDNA virus, tentatively named Diaporthe sojae circular DNA virus 1 (DsCDV1), was identified in the phytopathogenic fungus Diaporthe sojae isolated from pear trees. DsCDV1 has a monopartite genome (3,185 nt in size) encapsidated in isometric virions (21-26 nm in diameter). The genome comprises seven putative open reading frames encoding a discrete replicase (Rep) split by an intergenic region, a putative capsid protein (CP), several proteins of unknown function (P1 to P4), and a long intergenic region. Notably, the two split parts of DsCDV1 Rep share high identities with the Reps of Geminiviridae and Genomoviridae, respectively, indicating an evolutionary linkage with both families. Phylogenetic analysis based on Rep or CP sequences placed DsCDV1 in a unique cluster, supporting the establishment of a new family, tentatively named Gegemycoviridae, intermediate to both families. DsCDV1 significantly attenuates fungal growth and nearly erases virulence when transfected into the host fungus. Remarkably, DsCDV1 can systematically infect tobacco and pear seedlings, providing broad-spectrum resistance to fungal diseases. Subcellular localization analysis revealed that P3 systematically localizes in plasmodesmata, while and its expression in trans-complementation experiments restores the wild-type phenotype of a movement-deficient plant virus; thus P3 is identified as a movement protein. DsCDV1 exhibits unique molecular and biological traits not observed in other ssDNA viruses, serving as a link between fungal and plant ssDNA viruses and presenting an evolutionary connection between ssDNA viruses and fungi. These findings contribute to expanding our understanding of ssDNA virus diversity and evolution, offering potential biocontrol applications for managing crucial plant diseases.

7.
JMIR Public Health Surveill ; 10: e47626, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748469

ABSTRACT

BACKGROUND: Beyond the direct effect of COVID-19 infection on young people, the wider impact of the pandemic on other infectious diseases remains unknown. OBJECTIVE: This study aims to assess changes in the incidence and mortality of 42 notifiable infectious diseases during the pandemic among children and adolescents in China, compared with prepandemic levels. METHODS: The Notifiable Infectious Disease Surveillance System of China was used to detect new cases and fatalities among individuals aged 5-22 years across 42 notifiable infectious diseases spanning from 2018 to 2021. These infectious diseases were categorized into 5 groups: respiratory, gastrointestinal and enterovirus, sexually transmitted and blood-borne, zoonotic, and vector-borne diseases. Each year (2018-2021) was segmented into 4 phases: phase 1 (January 1-22), phase 2 (January 23-April 7), phase 3 (April 8-August 31), and phase 4 (September 1-December 31) according to the varying intensities of pandemic restrictive measures in 2020. Generalized linear models were applied to assess the change in the incidence and mortality within each disease category, using 2018 and 2019 as the reference. RESULTS: A total of 4,898,260 incident cases and 3701 deaths were included. The overall incidence of notifiable infectious diseases decreased sharply during the first year of the COVID-19 pandemic (2020) compared with prepandemic levels (2018 and 2019), and then rebounded in 2021, particularly in South China. Across the past 4 years, the number of deaths steadily decreased. The incidence of diseases rebounded differentially by the pandemic phase. For instance, although seasonal influenza dominated respiratory diseases in 2019, it showed a substantial decline during the pandemic (percent change in phase 2 2020: 0.21, 95% CI 0.09-0.50), which persisted until 2021 (percent change in phase 4 2021: 1.02, 95% CI 0.74-1.41). The incidence of gastrointestinal and enterovirus diseases decreased by 33.6% during 2020 but rebounded by 56.9% in 2021, mainly driven by hand, foot, and mouth disease (percent change in phase 3 2021: 1.28, 95% CI 1.17-1.41) and infectious diarrhea (percent change in phase 3 2020: 1.22, 95% CI 1.17-1.28). Sexually transmitted and blood-borne diseases were restrained during the first year of 2021 but rebounded quickly in 2021, mainly driven by syphilis (percent change in phase 3 2020: 1.31, 95% CI 1.23-1.40) and gonorrhea (percent change in phase 3 2020: 1.10, 95% CI 1.05-1.16). Zoonotic diseases were not dampened by the pandemic but continued to increase across the study period, mainly due to brucellosis (percent change in phase 2 2020: 0.94, 95% CI 0.75-1.16). Vector-borne diseases showed a continuous decline during 2020, dominated by hemorrhagic fever (percent change in phase 2 2020: 0.68, 95% CI 0.53-0.87), but rebounded in 2021. CONCLUSIONS: The COVID-19 pandemic was associated with a marked decline in notifiable infectious diseases in Chinese children and adolescents. These effects were not sustained, with evidence of a rebound to prepandemic levels by late 2021. To effectively address the postpandemic resurgence of infectious diseases in children and adolescents, it will be essential to maintain disease surveillance and strengthen the implementation of various initiatives. These include extending immunization programs, prioritizing the management of sexually transmitted infections, continuing feasible nonpharmaceutical intervention projects, and effectively managing imported infections.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , China/epidemiology , Adolescent , Child , Child, Preschool , Young Adult , Incidence , Male , Communicable Diseases/epidemiology , Female , Pandemics , Disease Notification/statistics & numerical data
8.
J Biomater Appl ; : 8853282241254750, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748570

ABSTRACT

Background: Glycyrrhetinic acid-mediated brucine self-assembled nanomicelles enhance the anti-hepatitis B properties of brucine by improving its water solubility, short half-life, toxicity, and side effects. Brucine (B) is an indole alkaloid extracted from the seeds of Strychnos nux-vomica (Loganiaceae). Purpose: To assess the efficacy of the Brucine-Glycyrrhetnic acid-Polyethylene glycol-3,3'-dithiodipropionic acid-Glycerin monostearate (B-GPSG) in treating hepatitis B, its potential to protect against acute liver injury caused by d-galactosamine and its anti-hepatoma activities were studied. Research Design: The concentration of B-GPSG used in the in vivo and in vitro experiments was 0.63 mg/mL. The rats injected with d-GalN (450 mg/kg) were used as liver injury models. The rats were separated into normal, model, positive, positive control, B-PSG and B-GPSG groups. Hepatoma cells expressing HBV HepG2.2.15 were used for in vitro experiments. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, plate cloning, Hoechst staining and flow cytometry were conducted to explore the mechanism of B-GPSG against hepatitis B. Results: Compared with the model group, the liver coefficient of B-GPSG group decreased (4.59 ± 0.17 vs 5.88 ± 0.42), the content of MDA in rat liver homogenate decreased (12.54 ± 1.81 vs 23.05 ± 2.98), the activity of SOD increased, the activity of ALT and AST in rat serum decreased. In vitro, the IC50 values of B-GPSG group decreased. B-GPSG group effectively inhibited the proliferation and migration of HepG2.2.15 cells. Conclusions: The hepatoprotective effects of B-GPSG nanomicelles, which are attributed to their GA-mediated liver targeting and synergistic actions with brucine, suggest their therapeutic potential against hepatitis B. This development opens up new possibilities for the application of traditional Chinese medicine and nanomedicine in anti-hepatitis B.

9.
Langmuir ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748978

ABSTRACT

Transition metal oxides are a potential anode material owing to their high theoretical capacity. Nonetheless, their large volume changes and low electrical conductivities lead to poor cycling performance and rate capabilities. In this article, an effective strategy is proposed and developed for preparing a ZnO/N-doped graphene composite (ZnNc/GO-5). The key point of this strategy is to use zinc tetra tert-butyl-naphthalocyanine (ZnNc) as a codoped source of N atoms and zinc ions, and graphene oxide (GO) which is combined with ZnNc by π-π deposition as a carbon matrix. After calcination, ZnO microcrystals coated with N-doped graphene are obtained. The unique features of the composite and synergistic effect between N-doped reduced graphene oxide and ZnO microcrystals enable good electrochemical performance by the composites when used in lithium-ion batteries. As an anode material, the as-synthesized ZnNc/GO-5 composite delivers a high first capacity of 1942.9 mAh g-1 and excellent cyclic stability of 861.4 mAh g-1 after 150 cycles at 100 mA g-1. This strategy may offer a new method of designing the anode materials of lithium-ion batteries and promote the practical use of organic molecules in next-generation lithium-ion batteries.

10.
Cancer Lett ; : 216964, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38762193

ABSTRACT

Tumor-associated macrophages (TAMs) are important components of the tumor microenvironment (TME) and strongly associated with poor prognosis and drug resistance, including checkpoint blockade immunotherapy in solid tumor patients. However, the mechanism by which TAM affects immune metabolism reprogramming and immune checkpoint signalling pathway in the TME remains elusive. In this study we found that transforming growth factor-beta (TGF-ß) secreted by M2-TAMs increased the level of glycolysis in bladder cancer (BLCA) and played important role in PD-L1-mediated immune evasion through pyruvate kinase isoenzymes M2 (PKM2). Mechanistically, TGF-ß promoted high expression of PKM2 by promoting the nuclear translocation of PKM2 dimer in conjunction with phosphorylated signal transducer and activator of transcription (p-STAT3), which then exerted its kinase activity to promote PD-L1 expression in BLCA. Moreover, SB-431542 (TGF-ß blocker) and shikonin (PKM2 inhibitor) significantly reduced PD-L1 expression and inhibited BLCA growth and organoids by enhancing anti-tumour immune responses. In conclusion, M2-TAM-derived TGF-ß promotes PD-L1-mediated immune evasion in BLCA by increasing the PKM2 dimer-STAT3 complex nuclear translocation. Combined blockade of the TGF-ß receptor and inhibition of PKM2 effectively prevent BLCA progression and immunosuppression, providing a potential targeted therapeutic strategy for BLCA.

11.
Int J Biol Macromol ; 270(Pt 1): 132117, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38718996

ABSTRACT

In this study, cellulose was extracted from black tea residues to produce black tea cellulose nanocrystals (BT-CNCs) using an optimized acid hydrolysis method. The structure and performance of BT-CNCs were evaluated. The results showed that the optimal conditions for acidolysis of BT-CNCs included a sulfuric acid concentration of 64 %, a solid-liquid ratio of 1:18 (w/v), a hydrolysis temperature of 45 °C, and a hydrolysis time of 50 min. The optimization process resulted in a 44.8 % increase in the yield of BT-CNCs, which exhibited a crystallinity of 68.57 % and were characterized by the typical cellulose I structure. The diameters of the particles range from 5 to 45 nm, and they exhibit aggregation behavior. Notably, BT-CNCs demonstrated excellent storage stability, and the Tyndall effect occurred when exposed to a single beam of light. Although the thermal stability of BT-CNCs decreased, their primary thermal degradation temperature remained above 200 °C. The colloidal nature of BT-CNCs was identified as a non-Newtonian fluid with "shear thinning" behavior. This study introduces a novel method to convert tea waste into BT-CNCs, increasing the yield of BT-CNCs and enhancing waste utilization. BT-CNCs hold promise for application in reinforced composites, offering substantial industrial value.

12.
J Inflamm Res ; 17: 2889-2895, 2024.
Article in English | MEDLINE | ID: mdl-38751686

ABSTRACT

Kikuchi-Fujimoto disease (KFD), also known as histiocytic necrotizing lymphadenitis, is a rare, benign, and self-limiting condition characterized by lymph node inflammation. While KFD is rarely associated with ocular manifestations, our case report highlights bilateral optic neuritis in a 13-year-old male patient with KFD. We also provide a comprehensive review of similar cases in the literature.

13.
Int J Biol Macromol ; 270(Pt 1): 132028, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38704066

ABSTRACT

Clinical therapy for widespread infections caused by Streptococcus pneumoniae (S. pneumoniae), such as community-acquired pneumonia, is highly challenging. As an important bacterial toxin, hydrogen peroxide (H2O2) secreted by S. pneumoniae can suppress the host's immune system and cause more severe disease. To address this problem, a hyaluronic acid (HA)-coated inorganic catalase-driven Janus nanomotor was developed, which can cleverly utilize and decompose H2O2 to reduce the burden of bacterial infection, and have excellent drug loading capacity. HA coating prevents rapid leakage of loaded antibiotics and improves the biocompatibility of the nanomaterials. The Janus nanomotor converted H2O2 into oxygen (O2), gave itself the capacity to move actively, and encouraged widespread dispersion in the lesion site. Encouragingly, animal experiments demonstrated that the capability of the nanomotors to degrade H2O2 contributes to diminishing the proliferation of S. pneumoniae and lung tissue damage. This self-propelled drug delivery platform provides a new therapeutic strategy for infections with toxin-secreting bacteria.

14.
Int J Biol Macromol ; 269(Pt 2): 132214, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38729489

ABSTRACT

Dietary fibers come from a wide range of sources and have a variety of preparation methods (including extraction and modification). The different structural characteristics of dietary fibers caused by source, extraction and modification methods directly affect their physicochemical properties and functional activities. The relationship between structure and physicochemical properties and functional activities is an indispensable basic theory for realizing the directional transformation of dietary fibers' structure and accurately regulating their specific properties and activities. In this paper, since a brief overview about the structural characteristics of dietary fiber, the effect of structural characteristics on a variety of physicochemical properties (hydration, electrical, thermal, rheological, emulsifying property, and oil holding capacity, cation exchange capacity) and functional activities (hypoglycemic, hypolipidemic, antioxidant, prebiotic and harmful substances-adsorption activity) of dietary fiber explored by researchers in last five years are emphatically reviewed. Moreover, the future perspectives of structure-activity relationship are discussed. This review aims to provide theoretical foundation for the targeted regulation of properties and activities of dietary fiber, so as to improve the quality of their applied products and physiological efficiency, and then to realize high value utilization of dietary fiber resources.

15.
Surg Endosc ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38782827

ABSTRACT

BACKGROUND: Post-endoscopic submucosal dissection electrocoagulation syndrome (PEECS) is an uncommon complication after colorectal endoscopic submucosal dissection (ESD). This study aimed to explore the risk factors of PEECS for superficial colorectal lesions based on the latest and consistent diagnostic criteria and to establish a predictive nomogram model. METHODS: This retrospective analysis included patients with superficial colorectal lesions who underwent endoscopic submucosal dissection (ESD) between June 2008 and December 2021 in our center. The independent risk factors of PEECS for superficial colorectal lesions were identified using least absolute shrinkage and selection operator (LASSO) logistic regression analysis, as well as univariate analysis and multivariate logistic regression, and derived predictive nomogram model was constructed. RESULTS: Among the 555 patients with superficial colorectal lesions enrolled, PEECS occurred in 45 (8.1%) patients. Multivariate logistic regression revealed that female sex (OR 3.94, P < 0.001), age > 50 years (OR 4.28, P = 0.02), injury to muscle layer (OR 10.38, P < 0.001), non-lifting sign (OR 2.20, P = 0.04) and inadequate bowel preparation (OR 5.61, P < 0.001) were independent risk factors of PEECS for superficial colorectal lesions. A predictive nomogram model was constructed based on the above five predictors. For this model, the area under the receiver operating characteristic (ROC) curve was 0.855, the calibration curve exhibited good consistency between the prediction and the actual observation, and the C-index was confirmed as 0.843 by bootstrap method. CONCLUSION: Female sex, age > 50 years, injury to muscle layer, non-lifting sign and inadequate bowel preparation were independent risk factors of PEECS for superficial colorectal lesions. The proposed nomogram could accurately predict the risk of PEECS for superficial colorectal lesions.

16.
Nanomaterials (Basel) ; 14(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38786784

ABSTRACT

Iron oxide nanoparticles (IONs) with good water dispersibility were prepared by the thermal decomposition of iron acetylacetonate (Fe(acac)3) in the high-boiling organic solvent polyethylene glycol (PEG) using polyethyleneimine (PEI) as a modifier. The nucleation and growth processes of the crystals were separated during the reaction process by batch additions of the reaction material, which could inhibit the nucleation but maintain the crystal growth, and products with larger particle sizes and high saturation magnetization were obtained. The method of batch addition of the reactant prepared IONs with the largest particle size and the highest saturation magnetization compared with IONs reported using PEG as the reaction solvent. The IONs prepared by this method also retained good water dispersibility. Therefore, these IONs are potentially suitable for the magnetic separation of cells, proteins, or nucleic acids when large magnetic responses are needed.

17.
Toxics ; 12(5)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38787107

ABSTRACT

The global burden of liver disease is enormous, which highlights the need for effective hepatoprotective agents. It was reported that allicin exhibits protective effects against a range of diseases. In this study, we further evaluated allicin's effect and mechanism in acute hepatic injury. Liver injury in mice was induced by intraperitoneal injection with 1% CCl4 (10 mL/kg/day). When the first dose was given, CCl4 was given immediately after administration of different doses of allicin (40, 20, and 10 mg/kg/day) as well as compound glycyrrhizin (CGI, 80 mg/kg/day), and then different doses of allicin (40, 20, and 10 mg/kg/day) as well as compound glycyrrhizin (CGI, 80 mg/kg/day) were administrated every 12 h. The animals were dissected 24 h after the first administration. The findings demonstrated a significant inhibition of CCl4-induced acute liver injury following allicin treatment. This inhibition was evidenced by notable reductions in serum levels of transaminases, specifically aspartate transaminase, along with mitigated histological damage to the liver. In this protective process, allicin plays the role of reducing the amounts or the expression levels of proinflammatory cytokines, IL-1ß, IL-6. Furthermore, allicin recovered the activities of the antioxidant enzyme catalase (CAT) and reduced the production of malondialdehyde (MDA) in a dose-dependent manner, and also reduced liver Caspase 3, Caspase 8, and BAX to inhibit liver cell apoptosis. Further analysis showed that the administration of allicin inhibited the increased protein levels of Nuclear factor-erythroid 2-related factor 2 (Nrf2) and NAD(P)H:quinone oxidoreductase 1 (NQO1), which is related to inflammation and oxidative stress. The in vitro study of the LPS-induced RAW264.7 inflammatory cell model confirmed that allicin can inhibit important inflammation-related factors and alleviate inflammation. This research firstly clarified that allicin has a significant protective effect on CCl4-induced liver injury via inhibiting the inflammatory response and hepatocyte apoptosis, alleviating oxidative stress associated with the progress of liver damage, highlighting the potential of allicin as a hepatoprotective agent.

18.
Article in English | MEDLINE | ID: mdl-38696094

ABSTRACT

In this study, Pediococcus pentosaceus C-2-1 and C23221 contained genes encoding penocin and pediocin PA-1, mined by antiSMASH. The penocin structural gene pedA from Pediococcus pentosaceus C-2-1 was successfully expressed in Escherichia coli BL21. The presence of a 6.5 kDa recombinant penocin was confirmed by Tricine-SDS-PAGE, and the specific activity increased by 1.54-fold. The bacteriocins produced by Pediococcus pentosaceus C23221 were purified using acetic ether extraction, Sepharose Fast Flow, Sephadex G-25 gel chromatography, and reversed-phase high-performance liquid chromatography (RP-HPLC); the amino acid sequence of this bacteriocin was identical to pediocin PA-1 by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), which confirmed the expression of pediocin PA-1 gene; and the specific activity increased by 24.39-fold. The heterologous expression and purification of bacteriocins have proved the expression of pediocin-like produced by Pediococcus pentosaceus. This provides a theoretical basis for the subsequent development and application of pediocin-like.

19.
Research (Wash D C) ; 7: 0353, 2024.
Article in English | MEDLINE | ID: mdl-38694203

ABSTRACT

Middle infrared stimulation (MIRS) and vibrational strong coupling (VSC) have been separately applied to physically regulate biological systems but scarcely compared with each other, especially at identical vibrational frequencies, though they both involve resonant mechanism. Taking cell proliferation and migration as typical cell-level models, herein, we comparatively studied the nonthermal bioeffects of MIRS and VSC with selecting the identical frequency (53.5 THz) of the carbonyl vibration. We found that both MIRS and VSC can notably increase the proliferation rate and migration capacity of fibroblasts. Transcriptome sequencing results reflected the differential expression of genes related to the corresponding cellular pathways. This work not only sheds light on the synergistic nonthermal bioeffects from the molecular level to the cell level but also provides new evidence and insights for modifying bioreactions, further applying MIRS and VSC to the future medicine of frequencies.

20.
BMC Health Serv Res ; 24(1): 425, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38570847

ABSTRACT

BACKGROUND: This study aimed to investigate the turnover intention among nurses in eastern China and explore the association between turnover intention and personal characteristics, family factors, and work-related factors. METHODS: A total of 2504 nurses participated in a cross-sectional survey administered in 26 hospitals in Eastern China from October to November 2017. In December 2021, a survey was conducted on nurses who resigned between December 2017 and November 2021. RESULTS: The turnover intention score of in-service nurses was 15 (12-17), and 43% of nurses had a high turnover intention, which was mainly due to the following reasons: age < 40 years, raising two or more children, monthly income of USD786.10-1572.20 or < USD786.10, occupation was assigned or selected according to parental wishes, ≤ 1 or ≥ 2-night shifts per week, contractual or third-party personnel agents, full-time nurses with part-time jobs, and high job stress. Among 102 retired nurses, 80.4% reported family reasons for leaving, 39.2% for work reasons, and 21.6% for other personal reasons. CONCLUSION: Nurses' intention to leave their occupation is high in Eastern China. Age < 40 years old, > 1 child, low income, involuntary career selection, frequent night shifts, informal employment, part-time, and high job stress are significant factors associated with nurses' willingness to leave. Government and hospital administrators should consider ways to address these factors to retain nurses in hospitals in eastern China and improve the quality of nursing services.


Subject(s)
Nurses , Nursing Staff, Hospital , Occupational Stress , Child , Humans , Adult , Cross-Sectional Studies , Intention , Job Satisfaction , China , Surveys and Questionnaires , Personnel Turnover
SELECTION OF CITATIONS
SEARCH DETAIL
...